Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Biol ; 227(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38149677

RESUMO

Cetaceans are capable of extraordinary locomotor behaviors in both water and air. Whales and dolphins can execute aerial leaps by swimming rapidly to the water surface to achieve an escape velocity. Previous research on spinner dolphins demonstrated the capability of leaping and completing multiple spins around their longitudinal axis with high angular velocities. This prior research suggested the slender body morphology of spinner dolphins together with the shapes and positions of their appendages allowed for rapid spins in the air. To test whether greater moments of inertia reduced spinning performance, videos and biologging data of cetaceans above and below the water surface were obtained. The principal factors affecting the number of aerial spins a cetacean can execute were moment of inertia and use of control surfaces for subsurface corkscrewing. For spinner dolphin, Pacific striped dolphin, bottlenose dolphin, minke whale and humpback whale, each with swim speeds of 6-7 m s-1, our model predicted that the number of aerial spins executable was 7, 2, 2, 0.76 and 1, respectively, which was consistent with observations. These data implied that the rate of subsurface corkscrewing was limited to 14.0, 6.8, 6.2, 2.2 and 0.75 rad s-1 for spinner dolphins, striped dolphins, bottlenose dolphins, minke whales and humpback whales, respectively. In our study, the moment of inertia of the cetaceans spanned a 21,000-fold range. The greater moments of inertia for the last four species produced large torques on control surfaces that limited subsurface corkscrewing motion and aerial maneuvers compared with spinner dolphins.


Assuntos
Golfinho Nariz-de-Garrafa , Jubarte , Stenella , Animais , Natação , Água
2.
J Exp Biol ; 225(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36039661

RESUMO

Pinnipedia, an order of semi-aquatic marine mammals, adapted a body design that allows for efficient aquatic locomotion but limited terrestrial locomotion. Otariids, like the California sea lion (Zalophus californianus), have enlarged forelimbs and can bring their hindlimbs under the body to locomote quadrupedally on land, but phocids (true seals) have reduced forelimbs and are unable to bring their hindlimbs beneath them during terrestrial locomotion. Because of these differences, phocids are expected to have greater energetic costs when moving on land compared with otariids. The mechanical costs of transport (COT) and power outputs of terrestrial locomotion were first obtained from one male and two female adult California sea lions through video recording locomotion sequences across a level runway. The center of mass, along with six other anatomical points, were digitized to obtain variables such as velocity (V), amplitude of heave (A) and the frequency (f) of oscillations during the locomotion cycle. These variables represent the principal parameters of a biomechanical model that computes the power output of individuals. The three California sea lions in this study averaged a power output of 112.04 W and a COT of 0.63 J kg-1 m-1. This footage was compared against video footage previously recorded of three phocid species (harbor seal, gray seal and northern elephant seal). Power output and mechanical COT were compared for all four pinniped species by tracking the animals' center of mass. The quadrupedal gait of sea lions showed lower vertical displacements of the center of mass, and higher velocities compared with the terrestrial gait of phocids. Northern elephant seals, gray seals and harbor seals showed significantly higher COT and power outputs than the sea lions. California sea lions locomote with lower energetic costs, and thus higher efficiency compared with phocids, proving that they are a mechanically intermediate species on land between terrestrial mammals and phocids. This study provides novel information on the mechanical energy exerted by pinnipeds, particularly California sea lions, to then be used in future research to better understand the limitations of these aquatic mammals.


Assuntos
Caniformia , Phoca , Leões-Marinhos , Animais , Feminino , Locomoção , Masculino
3.
J Exp Biol ; 221(Pt 18)2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30127084

RESUMO

The aquatic specializations of phocid seals have restricted their ability to locomote on land. The amphibious northern elephant seal, Mirounga angustirostris, is the second largest phocid seal in the world, with males reaching 2700 kg. Although elephant seals are proficient swimmers and deep divers, their extreme size and aquatic specializations limit terrestrial movement. The kinematics of terrestrial locomotion in northern elephant seals were analyzed from video recordings of animals observed on the beach of Año Nuevo State Reserve, CA, USA. The seals moved using a series of rhythmic undulations produced by dorsoventral spinal flexion. The traveling spinal wave moved anteriorly along the dorsal margin of the body with the chest, pelvic region and foreflippers serving as the main points of contact with the ground. The hindflippers were not used. The spinal wave and foreflippers were used to lift the chest off the ground as the body was pushed forward from the pelvis as the foreflippers were retracted to pull the body forward. Seals moved over land at 0.41-2.56 m s-1 (0.12-0.71 body lengths s-1). The frequency and amplitude of spinal flexions both displayed a direct increase with increasing speed. The duty factor for the pelvic region decreased with increasing velocity while the duty factor of the foreflipper remained constant. Kinematic data for elephant seals and other phocids were used in a biomechanical model to calculate the mechanical energy expended during terrestrial locomotion. The elephant seals were found to expend more energy when traveling over land for their size than smaller phocids. The unique method of terrestrial movement also exhibited greater energy expenditure on land than values for large quadrupeds. The trade-off for the northern elephant seal is that its massive size and morphology have well adapted it to an aquatic existence but limited its locomotor performance (i.e. speed, endurance) on land.


Assuntos
Tamanho Corporal , Locomoção/fisiologia , Focas Verdadeiras/fisiologia , Animais , Fenômenos Biomecânicos , California , Metabolismo Energético , Meio Ambiente , Masculino , Modelos Biológicos , Movimento
4.
J Exp Biol ; 210(Pt 16): 2811-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17690228

RESUMO

Crocodilians, including the alligator (Alligator mississippiensis), perform a spinning maneuver to subdue and dismember prey. The spinning maneuver, which is referred to as the ;death roll', involves rapid rotation about the longitudinal axis of the body. High-speed videos were taken of juvenile alligators (mean length=0.29 m) performing death rolls in water after biting onto a pliable target. Spinning was initiated after the fore- and hindlimbs were appressed against the body and the head and tail were canted with respect to the longitudinal body axis. With respect to the body axis, the head and tail bending averaged 49.2 degrees and 103.3 degrees , respectively. The head, body and tail rotated smoothly and freely around their individual axes of symmetry at 1.6 Hz. To understand the dynamics of the death roll, we mathematically modeled the system. The maneuver results purely from conservation of angular momentum and is explained as a zero angular momentum turn. The model permits the calculation of relevant dynamical parameters. From the model, the shear force, which was generated at the snout by the juvenile alligators, was 0.015 N. Shear force was calculated to scale with body length to the 4.24 power and with mass to the 1.31 power. When scaled up to a 3 m alligator, shear force was calculated at 138 N. The death roll appears to help circumvent the feeding morphology of the alligator. Shear forces generated by the spinning maneuver are predicted to increase disproportionately with alligator size, allowing dismemberment of large prey.


Assuntos
Jacarés e Crocodilos/fisiologia , Comportamento Alimentar/fisiologia , Atividade Motora/fisiologia , Água , Animais , Fenômenos Físicos , Física , Cauda/fisiologia
5.
J Exp Biol ; 209(Pt 4): 590-8, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16449554

RESUMO

The spinner dolphin (Stenella longirostris) performs spectacular leaps from the water while rotating around its longitudinal axis up to seven times. Although twisting of the body while airborne has been proposed as the mechanism to effect the spin, the morphology of the dolphin precludes this mechanism for the spinning maneuver. A mathematical model was developed that demonstrates that angular momentum to induce the spin was generated underwater, prior to the leap. Subsurface corkscrewing motion represents a balance between drive torques generated by the flukes and by hydrodynamic forces at the pectoral fins, and resistive torques, induced by the drag forces acting on the rotating control surfaces. As the dolphin leaps clear of the water, this balance is no longer maintained as the density of the air is essentially negligible, and a net drive torque remains, which permits the dolphin's rotation speed to increase by as much as a factor of three for a typical specimen. The model indicates that the high rotation rates and orientation of the dolphin's body during re-entry into the water could produce enough force to hydrodynamically dislodge unwanted remoras.


Assuntos
Atividade Motora/fisiologia , Stenella/fisiologia , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Natação/fisiologia , Torque
6.
J Exp Biol ; 206(Pt 10): 1649-56, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12682097

RESUMO

Turning performance is constrained by morphology, where the flexibility of the body and the mobility and position of the control surfaces determine the level of performance. The use of paddling appendages in conjunction with the rigid bodies of aquatic arthropods could potentially limit their turning performance. Whirligig beetles (Coleoptera: Gyrinidae) are rigid-bodied, but these aquatic insects can swim rapidly in circular patterns. Turning performance of swimming whirligig beetles (Dineutes horni) was assessed by videotaping beetles in a small (115 mm diameter) arena at 500 frames s(-1) and 1000 frames s(-1). Curved trajectories were executed as continuous powered turns. Asymmetrical paddling of the outboard legs was used to power the turn. Turns were produced also by abduction of the inboard elytra and vectored thrust generated from sculling of the wing at 47.14 Hz. The abducted elytra increased drag and acted as a pivot. Swimming speeds varied from 0.06 m s(-1) to 0.55 m s(-1) (4.7-44.5 L s(-1)). Relative minimum radius was 24% of body length. Maximum rate of turn was 4428 degrees s(-1) with maximum centripetal acceleration of 2.86 g. Turning radius was weakly associated with swimming velocity, although minimum values of the radius showed no correlation with velocity. Turning rate was also related indirectly to radius and directly to centripetal acceleration. Compared to vertebrates with flexible bodies, the relative turning radius of whirligig beetles is constrained by a rigid body and use of drag-based propulsive mechanisms. However, these mechanisms permit continuous turning, and the size of the beetle permits higher turn rates with lower centripetal accelerations.


Assuntos
Besouros/fisiologia , Animais , Fenômenos Biofísicos , Biofísica , Modelos Biológicos , Natação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...